skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Peluse, Sarah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. Abstract A nonlinear version of Roth's theorem states that dense sets of integers contain configurations of the form , , . We obtain a multidimensional version of this result, which can be regarded as a first step toward effectivising those cases of the multidimensional polynomial Szemerédi theorem involving polynomials with distinct degrees. In addition, we prove an effective “popular” version of this result, showing that every dense set has some non‐zero such that the number of configurations with difference parameter is almost optimal. Perhaps surprisingly, the quantitative dependence in this result is exponential, compared to the tower‐type bounds encountered in the popular linear Roth theorem. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  3. Abstract Let$$P_1, \ldots , P_m \in \mathbb {K}[\mathrm {y}]$$be polynomials with distinct degrees, no constant terms and coefficients in a general local field$$\mathbb {K}$$. We give a quantitative count of the number of polynomial progressions$$x, x+P_1(y), \ldots , x + P_m(y)$$lying in a set$$S\subseteq \mathbb {K}$$of positive density. The proof relies on a general$$L^{\infty }$$inverse theorem which is of independent interest. This inverse theorem implies a Sobolev improving estimate for multilinear polynomial averaging operators which in turn implies our quantitative estimate for polynomial progressions. This general Sobolev inequality has the potential to be applied in a number of problems in real, complex andp-adic analysis. 
    more » « less